349. Molecular Polarisability: the Molar Kerr Constants of Methyl Methacrylate and its Polymers.

By R. J. W. Le Fèvre and K. M. S. Sundaram.

The apparent dipole moments, molar Kerr constants, etc., in benzene at 25° are reported for methyl methacrylate and eight of its polymers having (viscosity) molecular weights within the range 23×10^{3} to 18×10^{5}. A conformation for the monomer is specified. The anisotropy of polarisability of the polymers diminishes as molecular weight increases. Scale models indicate that internal rotations within the polymer chain are strongly inhibited and that short segments must be relatively stiff; their ability to bend and twist slightly suggests that larger chains may tend to adopt curved or helical configurations such as have been proposed as a result of X-ray and other studies. Empirical relations between the degree of polymerisation and various observable properties are also noted.
The present measurements are related to others (on polystyrenes, polyvinyl acetates, polyethylene glycols, polyvinyl chlorides, and polyvinyl bromides) already published. ${ }^{1}$ They were begun in the hope that electric birefringence might provide information on the shapes and configurations of poly(methyl methacrylates) as solutes. Indications by other physical methods have not always been consistent among themselves.

Experimental

Solutes.-Methyl methacrylate was prepared by the depolymerisation ${ }^{2}$ of "Perspex" at 300°. The redistilled fraction, b. p. $98-101^{\circ} / 759 \mathrm{~mm}$., plus $c a .0 .5 \%$ of quinol was stored in the dark. Before use the ester was purified ${ }^{3}$ by washing with 5% sodium hydroxide solution, drying (MgSO_{4}), and distillation in nitrogen through a 20 cm . jacketed Widmer column. Middle cuts, b. p. $54 \cdot 0^{\circ} / 148 \mathrm{~mm} ., n_{\text {D }}^{25} 1 \cdot 4115, d_{4}^{25} 0.9369$, were collected and kept under nitrogen in sealed tubes at 0° in the dark until required.

Polymerisation was by an emulsion technique. ${ }^{4,5}$ A mixture of water (oxygen-free, 2.51 .), 2 N -sulphuric acid ($80 \mathrm{c} . \mathrm{c}$.), trimethylcetylammonium bromide (" Cetavlon;" 3 g .), and methyl methacrylate (200 c.c.), was stirred vigorously while nitrogen slowly bubbled through it. Benzoyl peroxide (twice dissolved in chloroform and precipitated by methanol; 2 g .) was then added and the temperature maintained at 65° for 4.2 hr ., after which the reaction was stopped with quinol. Pouring the emulsion into an excess of methanol-water gave the crude polymer which was repeatedly washed with methanol-water, then dried for 20 hr . at 60° and for 10 hr . in a vacuum at 50°. This heterogeneous preparation was fractionated twice from a 1.5% solution in benzene by using methanol as precipitant, being thus divided into nine fractions of which the four (samples I-IV) having relatively low molecular weights were taken for the present work. Polymer specimens V-VII were obtained by bulk polymerisation ${ }^{6}$ of the monomer (with 1.5% of benzoyl peroxide) in sealed tubes under nitrogen for 75 min . at $c a .150^{\circ}$, 100°, and 75°, respectively. Fractionation was as with the emulsion-produced material. Sample VIII was commercial " Perspex " purified similarly.

The benzene used as solvent was from the sodium-dried stock ${ }^{7}$ retained for dipole moment and Kerr effect purposes.

Molecular Weights of Polymers I to VIII.-These were estimated from measurements of the viscosities of solutions in benzene at 25°. The Ostwald-Fenske type of viscometer used had an efflux time for the solvent of 78.8 sec . The values given below for intrinsic viscosities [n] have been obtained by plotting $\log \left(\eta_{\mathrm{sp}} / c\right)$ against c (the concentration of solute per 100 c.c.

[^0]Table 1.
Dielectric constants, birefringences, etc., observed for solutions of methyl methacrylate and eight polymers of it in benzene.

Solute: Methyl methacrylate.							Solute: Polymer 1.				
$10^{5} w_{2}$.	1288	3652	6029	8191	10,413	12,400	$10^{5} w_{2}$	1160	1500	2546	3170
$-10^{4} \Delta n$	14	35	54	69	89	107		2.2984	$2 \cdot 3071$	$2 \cdot 3317$	$2 \cdot 3463$
$-10^{4} \triangle n^{2}$	42	105	162	208	268	321		$0 \cdot 87652$	$0 \cdot 87749$	0.88008	0.88163
ε^{12}	$2 \cdot 3076$	$2 \cdot 3763$	$2 \cdot 4457$	$2 \cdot 5021$	2.5665	2.6234	$10^{7} \Delta B$	$0 \cdot 0070$	$0 \cdot 0094$	$0 \cdot 0158$	$0 \cdot 0198$
d^{12}	0.87454	0.87576	0.87704	0.87823	0.87946	0.88059	Whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2 \cdot 326$; $\Sigma \Delta d / \Sigma w_{2}=0 \cdot 2466 ;$ $\Sigma \Delta B / \Sigma w_{\mathrm{z}}=0.624_{\mathrm{s}} \times 10^{-7}$.				
$\begin{gathered} \text { Whence } \Sigma \Delta n / \Sigma w_{2}=-0.087_{7} ; \Sigma \Delta n^{2} / \sum_{w_{2}}=-0.264 ; \\ \Sigma \Delta \varepsilon / \Sigma w_{2}=2 \cdot 82_{7} ; \Sigma \Delta d / \Sigma w_{2}=0.0544 . \end{gathered}$											
$10^{5} 2 e_{2}$	1288	2413	3652	6029	6914	8191	$10^{4} c$	9690	13,164	22,409	27,946
$10^{7} \Delta B$	$0 \cdot 059$	$0 \cdot 107$	$0 \cdot 160$	$0 \cdot 260$	$0 \cdot 300$	$0 \cdot 358$	$10^{4} \eta_{\text {sp }}$	1771	2482	5136	7118
Whence $\Sigma \Delta B / \Sigma w_{\mathbf{2}}=4 \cdot 36_{7} \times 10^{-7}$.											

Solute: Polymer II.					Solute: Polymer III.						
$10^{5} w_{2}$	1462	1704	2007	2297	$10^{5} w_{2} \ldots$	1389	1917	2648	3430	4267	4812
$\varepsilon_{12} \ldots$... $2 \cdot 3060$	$2 \cdot 3104$	2-3182	$2 \cdot 3249$	$\varepsilon_{12} \ldots \ldots$.	$2 \cdot 3000$	$2 \cdot 3104$	$2 \cdot 3278$	$2 \cdot 3429$	$2 \cdot 3618$	$2 \cdot 3721$
d_{12}	... 0.87743	0.87800	0.87876	0.87950	$d_{12} \cdots \cdots$	$0 \cdot 8773$	$0 \cdot 87863$	$0 \cdot 88039$	$0 \cdot 88224$	$0 \cdot 88428$	$0 \cdot 88605$
$10^{72} \ddot{A} B$... 0.0077	$0 \cdot 0091$	0.0110	0.0128	Whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2.058 ; \Sigma \Delta d / \Sigma w_{2}=0.2499$.						
Whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2.269$;					$10^{5} w_{2} \ldots$	3430	4267	4623	4812		
	$\Sigma \Delta d / \Sigma$	$v_{2}=-0$	2475 ;		$10^{7} \Delta B \ldots$	$0 \cdot 012$	$0 \cdot 019$	$0 \cdot 024$	$0 \cdot 027$		
$\Sigma \Delta B / \Sigma w_{2}=0.543_{5} \times 10^{-7}$. Whence $\Sigma \Delta B / \Sigma w_{2}=0.4788_{4} \times$											
$10^{4} \mathrm{C}$	12,828	14,961	17,637	20,201	$10^{4} \mathrm{C}$	12,182	23,309	37,735	42,639		
Whence $\left(\eta_{\mathrm{sp}} / c\right)_{e \rightarrow 0}=0.2139$.					$10^{4} \eta_{\text {sp }} \ldots$	4029	8489	15,415	18,349		
					Whence $\left(\eta_{\mathrm{sp}} / c\right)_{c \rightarrow 0}=0.2754$.						

Solute: Polymer IV.						
$10^{5} w_{2}$	1285	1551	3462	4371	4755	5297
ε_{12}	-	$2 \cdot 3050$	$2 \cdot 3434$	$2 \cdot 3614$	$2 \cdot 3696$	$2 \cdot 3800$
d_{12}	0.87700	$0 \cdot 87763$	$0 \cdot 88220$	$0 \cdot 88490$	$0 \cdot 88569$	$0 \cdot 88722$
$10^{7} \Delta B$	-	-	$0 \cdot 012$	$0 \cdot 018$	$0 \cdot 022$	0.026
Whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2.042 ; \Sigma \Delta d / \Sigma w_{2}=0.2502 ; \Sigma \Delta B / \Sigma w_{2}=0.436 \times 10^{-7}$.						
$10^{4} \mathrm{C}$	13,607	30,542	38,679	46,990		
$10^{4} \eta_{\text {sp }}$.	5665	16,291	23,735	29,300		
Whence $\left(\eta_{\mathrm{sp}} / c\right)_{c \rightarrow 0}=0 \cdot 3467$.						

Solute: Polymer VII.								Solute: Polymer VIII.				
$10^{5} w_{2} \ldots$	${ }_{2} 1428$	1634 2.3085	1889 .3152	2079 2.3177	2219	$10^{5} w_{2}$	392	537	920	1213	1556	1768
$\varepsilon_{12} \ldots \ldots$.	$2 \cdot 3036$	$2 \cdot 3085$	2.3152	2.3177	$2 \cdot 3208$	$\varepsilon_{12}{ }_{12} \quad \ldots$	352	2.2832	2.2903	$2 \cdot 2965$	2.3031	$2 \cdot 3064$
$d_{12} \ldots$	0.87745 0.0040	0.87803 0.0047	0.87869 0.0052	0.87910 0.0056	0.87951 0.0061	${ }^{1} 12$	$0 \cdot 87488$	0.87527	0.87629	0.87706	0.87812	$0 \cdot 87870$
$10^{7} \Delta B$	0.0040	$0 \cdot 0047$	$0 \cdot 0052$	0.0056	0.0061	$10^{12} \Delta$		-87527	0.0013	$0 \cdot 0018$	$0 \cdot 0024$	$0 \cdot 0028$
$\begin{aligned} & \text { Whence } \Sigma \Delta \varepsilon / \Sigma w_{2}=2 \cdot 198 \\ & \Sigma \Delta d / \Sigma w_{2}=0.2571 ; \\ & \Sigma \Delta B / \Sigma w_{2}=0.276_{3} \times 10^{-7} \end{aligned}$						Whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=1.969 ; \Sigma \Delta d / \Sigma w_{2}=0.2750$; $\Sigma \Delta B / \Sigma w_{2}=0 \cdot 152_{1} \times 10^{-7}$.						
$10^{4} \mathrm{C}$	12,530	16,597	18,277	19,517		${ }^{10} 0^{4} \mathrm{C}$	4699		64	10,635 460432	13,6	
$10^{4} \eta_{\mathrm{sp}} \ldots$	42,285	72,942	90,257	113,608		$10^{4} \eta_{\text {sp }}$	56,012			460,432	1,189,	
Whence $\left(\eta_{\mathrm{sp}} / c\right)_{e \rightarrow 0}=1.5210$.						Whence $\left(\eta_{\mathrm{ap}} / c\right)_{c \rightarrow 0}=4 \cdot 150$.						

of solution) and extrapolation to infinite dilution. Relations for the calculation of "viscositymolecular weights" in benzene are given in the literature by Baxendale et al., ${ }^{8}$ by Fattakhov, Tsvetkov, and Kallistov, ${ }^{9}$ and by others cited by Fox et al. ${ }^{10}$ who themselves propose two formulæ, one applicable to M 's below and the other to M 's above 44,000. In the present work the equation from ref. 8 has been adopted, producing apparent molecular weights as shown in Table 2. (The M 's calculated by Baxendale's expression are, with one exception, always smaller than those by the alternatives, $M_{\text {Bax }}$ being $0.6-0.7$ of $M_{\text {Fatt }}$, or, for polymers III-VIII, 0.83 of $M_{\text {Fox }}$; for polymers I and II $M_{\text {Bax }}$ is $1 \cdot 1$ and 0.87 of $M_{\text {Fox }}$, respectively. Such differences, however, while obviously changing the values of molar quantities listed in Table 2, do not affect the conclusions finally reached.)

Polarisations, Apparent Moments, Electric Birefringences, etc.-Apparatus and techniques for the measurement of these properties have been described before (refs. 1, 7, and 11). Observations and calculated information therefrom are given in Tables \mathbf{l} and 2, respectively (for a summary of symbols used here, see Le Fèvre and Sundaram ${ }^{12}$).

Table 2.

Solute	Monomer	I	II	III	IV	V	VI	VII	VIII
$\alpha \varepsilon_{1} \ldots \ldots \ldots \ldots$	$2 \cdot 827$	$2 \cdot 326$	$2 \cdot 269$	2.058	$2 \cdot 042$	2.552	$2 \cdot 218$	$2 \cdot 198$	1.970
β	$0 \cdot 0623$	$0 \cdot 2822$	$0 \cdot 2838$	$0 \cdot 2860$	$0 \cdot 2863$	$0 \cdot 2830$	$0 \cdot 2916$	$0 \cdot 2942$	$0 \cdot 3147$
$\gamma \ldots$	-0.059	-	-	-	-	-	-		
$\gamma^{\prime} n^{2} \quad \ldots . . .$.	-0.264				-				
	10.65	1.524	1.326	$1 \cdot 167$	1.064	1.237	0.747	0.675	$0 \cdot 371$
∞P_{2} (c.c.) \ldots	$0 \cdot 8514$	$0 \cdot 6822$	$0 \cdot 6710$	$0 \cdot 6305$	0.6274	$0 \cdot 7244$	$0 \cdot 6586$	0.6540	$0 \cdot 6041$
$\infty^{r_{2}}$ (c.c.) \ldots	$0 \cdot 2639$	$0 \cdot 2405$	$0 \cdot 2401$	$0 \cdot 2392$	$0 \cdot 2391$	$0 \cdot 2402$	$0 \cdot 2374$	$0 \cdot 2347$	$0 \cdot 2296$
$\infty\left({ }_{3} K_{2}\right) 10^{14}$	$78 \cdot 10$	$8 \cdot 717$	$7 \cdot 415$	6.939	6.212	$5 \cdot 741$	$3 \cdot 153$	$2 \cdot 660$	1.014
$\left(\eta_{\varphi} / c^{\prime}\right)_{c \rightarrow 0}$		$0 \cdot 1522$	$0 \cdot 2139$	$0 \cdot 2754$	$0 \cdot 3467$	$0 \cdot 4519$	$1 \cdot 4130$	1.5210	$4 \cdot 1500$
$M_{2} \ldots \ldots \ldots \ldots$	100	23,500	36,800	51,300	69,500	98,600	443,400	490,000	1,838,700
$\infty\left({ }_{\mathrm{m}} K_{2}\right) 10^{12}$	$78 \cdot 1$	2049	2729	3560	4317	5660	13,980	13,034	18,644
$\infty^{\infty} P_{2}$ (c.c.)	$85 \cdot 1$	16,030	24,690	32,350	43,610	71,430	292,050	320,460	1,110,810
$R_{\text {D }}$ (c.c.)	$26 \cdot 4$	5650	8840	12,270	16,620	23,690	105,250	115,880	422,200
$\mu\left(\mathrm{D}^{*}\right) \ldots \ldots$	$1 \cdot 67{ }_{5}$	22	27	31	36	48	94	99	181

Discussion

Dipole Moment and Conformation of Methyl Methacrylate.-The dipole moment $\left(1.67_{5} \mathrm{D}\right)$ now found for this molecule in benzene at 25° is smaller than that (1.78 D) obtained by Mikhailov ${ }^{13}$ in an unspecified solvent at an unspecified temperature. The slight lowering of moment from methyl isobutyrate (the corresponding saturated ester, which has $\left.{ }^{14} \mu=1.80 \mathrm{D}\right)$ to methyl methacrylate can be attributed mainly to minor differences in the conformations of the two esters. [Conjugation effects are not clear: that conjugation exists is suggested by the fact that $\nu(\mathrm{C}=0)\left(1718 \mathrm{~cm} .^{-1}\right)$ for methyl methacrylate is ${ }^{15}$ some $20 \mathrm{~cm} .^{-1}$ below $v(\mathrm{C}=\mathrm{O})$ usual with saturated esters, but instead of $\mu(\mathrm{C}=0)$ being raised ${ }^{16}$ by conjugation the reverse appears to occur.] An s-cis-disposition of the $\mathrm{C}=\mathrm{O}$ and O -Alkyl bonds in aliphatic esters has been shown ${ }^{17}$ by many physical methods. Considerations of anisotropic polarisabilities ${ }^{14}$ have recently indicated the

[^1]non-planar character of the methoxycarbonyl group, consistently with Ukaji's finding, ${ }^{18}$ from electron diffraction, that in methyl methacrylate as a gas the planes containing the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ and $\mathrm{CH}_{2}=\mathrm{CMe} \cdot \mathrm{CO} \cdot \mathrm{O}$ units are inclined at $25^{\circ} \pm 5^{\circ}$.

The polarity now reported for methyl methacrylate can be reconciled with the observations in refs. 14, 17, and 18. Let the inter-bond angles be as in Ukaji's paper, the moment components due to the $\mathrm{C}=\mathrm{O}$ link and the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ triangle be 2.7 and $\mathrm{l} \cdot 28 \mathrm{D}$, respectively, and $\mu_{\mathrm{C}-\mathrm{H}}$ be regarded as negligibly small. The observed resultant then shows the components as interacting at $\theta=152.5^{\circ}, \mu_{\text {resultant }}$ is located according to the relation $\tan \alpha=$ $1 \cdot 28 \sin \theta / 2 \cdot 7+1 \cdot 28 \cos \theta$, where α (the angle between $\mu_{\text {resultant }}$ and $\mu_{\mathrm{C}=0}$) is $20^{\circ} 42^{\prime}$. These estimates of θ and α are roughly those expected if the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangle is raised out of the flat configuration by a rotation about the C-O bond of $c a .30^{\circ}$.

Molar Kerr Constant and Conformation of Methyl Methacrylate.-Principal polarisabilities b_{1}, b_{2}, and b_{3} are computed (by using the geometrical specifications of ref. 18, together with the longitudinal, transverse, and vertical polarisabilities of the involved bonds ${ }^{11,14,19}$) for four models: (IA and B), both planar but with the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ links respectively cis and trans to each other, and (IC and D), which are non-planar variants of (IA and B) generated by rotating the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangles 30° above the planes of (IA and B). The mutually perpendicular arbitrary axes X, Y, and Z (used to define the

locations of b_{1}, b_{2}, and b_{3}, and μ_{1}, μ_{2}, and μ_{3}) are chosen so that $\mathrm{C}=\mathrm{O}$ is parallel to X, and Y is at 90° to X in the plane containing the $\mathrm{CH}_{2}=\mathrm{CMe} \cdot \mathrm{CO} \cdot \mathrm{O}$ unit. From b_{1}, b_{2}, etc., and the directions and magnitudes of the moment components, μ_{1}, μ_{2}, and μ_{3}, the molar Kerr constant expected for each model is calculated (Table 3) and compared with the ${ }_{\mathrm{m}} K$ from experiment.

Table 3.
Principal polarisabilities and molar Kerr constants calculated for models (IA-D).

Conformation type	Principal axes*	Direction cosines with			Dipole moment	
		X	Y	Z	components \dagger	${ }^{10} 0^{12} \mathrm{~K}$ (calc.)
(IA)	$b_{1}=1 \cdot 180$	0.7547	-0.6561	0	$\mu_{1}=1.264$	
	$b_{1}=1.059$	0.5651	$0 \cdot 7547$	0	$\mu_{2}=1.099$	65.05
	$b_{3}=0.768$	0	0	1	$\mu_{3}=0$	
(IB)	$b_{1}=1.219$	1	0	0	$\mu_{1}=1.675$	
	$b_{2}=1.020$	0	1	0	$\mu_{2}=0$	$108 \cdot 4$
	$b_{3}=0.768$	0	0	1	$\mu_{3}=0$	
(IC)	$b_{1}=1.189$	$0 \cdot 7548$	-0.6559	-0.0085	$\mu_{1}=1 \cdot 185$	
	$b_{2}=1.041$	$0 \cdot 6549$	0.7527	0.0680	$\mu_{2}=0.983$	$39 \cdot 9$
	$b_{3}=0.777$	-0.0382	-0.0569	0.9976	$\mu_{3}=-0.660$	
(ID)	$b_{1}=1.217$	0.9975	-0.0688			
	$b_{2}=1.013$	0.0673	0.9951	$0 \cdot 0728$	$\mu_{2}=0.062$	$77 \cdot 5$
	$b_{3}=0.777$	-0.0227	-0.0714	0.9972	$\mu_{3}=-0.635$	
		* In 10^{-23} c.c. \dagger In d.				

[^2]It is seen that a conformation as in (ID) provides satisfactory agreement with measurement.

Physical Properties and Molecular Weights of Poly(methyl Methacrylates).-As previously noted with other polymers, ${ }^{1}$ most of the measured quantities tend to change smoothly with increasing molecular weight. Empirical equations may be fitted to the dielectric constant, density, and electric birefringence factors, to the specific polarisations, refractions, and Kerr constants, and to the apparent moments, whereby these data are expressed in terms of \log ($M_{\text {polymer }} / M_{\text {monomer }}$), i.e., of \log (degree of polymerisation). Writing this logarithm as L, we have from Table 1:

$$
\begin{aligned}
\alpha \varepsilon & =3 \cdot 67-0 \cdot 795 L+0 \cdot 097 L^{2} \\
\beta d_{1} & =0 \cdot 2260+0 \cdot 0086 L \\
10^{7} \delta \beta_{1} & =1 \cdot 868-0 \cdot 69 L+0 \cdot 068 L^{2} \\
\infty p_{2} & =0 \cdot 7760-0 \cdot 0402 L \\
\infty r_{2} & =0 \cdot 2521-0 \cdot 00474 L \\
10^{14} \infty\left(K_{2}\right) & =17 \cdot 1-3 \cdot 774 L \\
\mu(D) & =2-32 \cdot 2 L+16 \cdot 1 L^{2}
\end{aligned}
$$

A comparison of calculated and observed values is given in Table 4. Some of the above equations may therefore be of possible use in the estimation of molecular weights, or degrees of polymerisation, as the measurements involved are no more difficult to make than those necessary in the conventional viscosity method; results, of course, will be on

Table 4.
Calculated and observed values of $\alpha \varepsilon, \beta d$, etc.

	I	II	III	IV	V	VI	VII	VIII
Polymer								
$\alpha \varepsilon_{1}$ calc.	$2 \cdot 33$	$2 \cdot 27$	$2 \cdot 23$	$2 \cdot 19$	$2 \cdot 16$	2.07	$2 \cdot 06$	$2 \cdot 04$
, expt.	$2 \cdot 33$	$2 \cdot 27$	2.06	2.04	2.55	$2 \cdot 22$	$2 \cdot 20$	$1 \cdot 97$
βd_{1} calc.	$0 \cdot 2464$	0.2481	$0 \cdot 2493$	0.2504	0.2518	$0 \cdot 2574$	$0 \cdot 2577$	$0 \cdot 2627$
, ${ }^{\text {e }}$ expt.	0.2466	0.2475	$0 \cdot 2499$	0.2502	0.2473	$0 \cdot 2548$	$0 \cdot 2571$	$0 \cdot 2750$
$10^{7} \delta B_{1}$ calc.	0.614	0.546	$0 \cdot 497$	0.456	$0 \cdot 412$	$0 \cdot 256$	$0 \cdot 249$	$0 \cdot 162$
", expt.	0.625	0.544	$0 \cdot 479$	0.436	$0 \cdot 507$	$0 \cdot 306$	$0 \cdot 277$	$0 \cdot 152$
${ }_{\infty} P_{2}$ calc.	0.6807	0.6728	$0 \cdot 6671$	0.6618	0.6557	$0 \cdot 6294$	$0 \cdot 6277$	$0 \cdot 6045$
,, expt.	$0 \cdot 6822$	0.6710	$0 \cdot 6305$	$0 \cdot 6274$	0.7244	$0 \cdot 6587$	$0 \cdot 6540$	$0 \cdot 6041$
$\infty^{r_{2}}$ calc.	$0 \cdot 2409$	0.2399	$0 \cdot 2393$	0.2386	$0 \cdot 2379$	$0 \cdot 2348$	$0 \cdot 2346$	$0 \cdot 2319$
, ${ }^{14}$ expt. ..	$0 \cdot 2405$	$0 \cdot 2401$	$0 \cdot 2392$	$0 \cdot 2391$	$0 \cdot 2402$	$0 \cdot 2374$	$0 \cdot 2347$	$0 \cdot 2296$
$10^{14}{ }_{\infty}\left({ }_{8} K_{2}\right)$ calc...	$8 \cdot 15$	$7 \cdot 42$	$6 \cdot 87$	6.43	$5 \cdot 80$	$3 \cdot 34$	$3 \cdot 17$	1.00
expt.	8.72	$7 \cdot 42$	6.94	6.21	$5 \cdot 74$	3-15	$2 \cdot 66$	1.01
μ (D) calc.	16	25	33	40	50	99	102	158
,, expt.	22	27	31	36	48	94	99	181

Baxendale's scale but division by 0.6_{5} or 0.83 will bring them into near-correspondence with the scales of Fattakhov et al. or Fox et al., respectively. As already noted, because Fox et al. use a viscosity relation for M 's below 44,000 differing from that recommended when M exceeds this magnitude, M_{Bax} for polymer I is 23,500 in contrast with an $M_{\text {Fox }}$ of 21,420 ; with polymer II $M_{\text {Bax }}$ is less than $M_{\text {Fox }}$, as it is with polymers III-VIII. Of interest, therefore, is the fact that the equations still apply to polymer I satisfactorily even when M is taken as 21,420 :

		$\alpha \varepsilon_{1}$	βd_{1}	δB_{1}	∞P_{2}	∞r_{2}	$10^{14} \infty\left({ }_{9} K_{2}\right)$
Calc.	$\ldots \ldots \ldots .$.	$2 \cdot 34$	$0 \cdot 246$	$0 \cdot 629$	$0 \cdot 679$	$0 \cdot 2410$	$8 \cdot 30$
Expt.	$\ldots \ldots \ldots \ldots$.	$2 \cdot 33$	$0 \cdot 247$	$0 \cdot 625$	$0 \cdot 682$	$0 \cdot 2405$	$8 \cdot 72$

From Table 4 it is seen that the observed dielectric constant and Kerr effect factors, and the specific polarisations, consistently exceed the calculated values for polymers V-VII. As V-VII were prepared by bulk polymerisation and I-IV by emulsion polymerisation, it seemed possible that the series I-VIII might not possess the same structural pattern throughout. Accordingly, infrared spectra (of films obtained by
evaporation of solutions in chloroform on to rock-salt plates) were examined. No significant differences between the polymers could be thus detected.

Apparent Dipole Moments of Poly(methyl Methacrylates).-The last two lines of Table 4 illustrate the augmentation of apparent polarity accompanying added molecular weight. The observation is not novel, as the results of de Brouckère et al..20 (who studied six polymer samples in benzene) show an analogous smooth increase of $\mu_{\text {apparent }}$ with $M_{\text {polymer }}$. When moments are plotted against $\log M_{\text {potymer }}$ the values in Table 2 produce a somewhat steeper curve than do those from ref. 20 (e.g., for our preparation with $M=490,000$, $\mu_{\text {apparent }}$ is 99 D ; for a polymer with $M=500,000$ de Brouckère et al. give $\left.\mu=83 \mathrm{D}\right)$. Such a divergence is explicable in various ways. Since at 25° we take $\mu_{\text {apparent }}$ as 0.2211 $\left[M\left(p_{2}-r_{2}\right)\right]^{0.5}$, the apparent polarity depends upon the estimate of M which (cf. above and refs. 8 and 9), by viscometry, might differ between two workers; moreover, in ref. 20 , Onsager's equation is used to extract μ directly from dielectric constants, refractivities thus being ignored. Further, Imamura reported ${ }^{21}$ that when the moments of the polyester prepared in the presence of three different initiators were measured (in benzene at 30°) the " moment per monomeric unit," computed by using $M_{\text {monomer }}$ throughout, is not constant, but $1.22,1 \cdot 37$, and 1.45 D for the three specimens severally; there is thus a possibility that dissimilarities in preparative methods also contribute to the non-accord in question. On the basis of the same " monomeric unit" Kojima ${ }^{22}$ had earlier given $1 \cdot 3 \mathrm{D}$, and our work shows $1 \cdot 45, \mathrm{l} \cdot 43, \mathrm{l} \cdot 36, \mathrm{l} \cdot 36,1 \cdot 52,1 \cdot 41,1 \cdot 41$, and 1.33 D (mean, 1.41 D), respectively, for polymers I-VIII. Incidentally, we note that the moments just cited are less than that of the monomer ($1 \cdot 67_{5} \mathrm{D}$); this contradicts a previous statement by Mikhailov and Krasmer ${ }^{23}$ and invalidates their deduction of high flexibility for this series of polymers.

Marchal et al. ${ }^{24}$ have determined the Debye-Bueche ${ }^{25}$ quotient ϕ in the equation $\mu^{2}=n \phi \mu_{0}^{2}$, where μ_{0} was taken as that of methyl propionate, although the last-named was not the nearest repeating unit of structure; they report for poly(methyl methacrylate) in benzene $\phi=0.62$. Using for μ_{0} the value for methyl isobutyrate ${ }^{12}(1.80 \mathrm{D})$ we find ϕ, for the data of Table 2, to lie between the extremes 0.72 and 0.55 , with a mean value of 0.61 , in satisfactory agreement with ref. 24 and with the results of Salovey ${ }^{26}$ (if his $\mu_{0}=1.6 \mathrm{D}$ is replaced by our 1.8 D). Salovey finds ϕ for atactic poly(methyl methacrylate) in benzene to rise from about 0.67 at 20° to nearly 0.82 at 70°. If we follow Debye and Bueche, ${ }^{25}$ therefore, since none of these ϕ 's reaches the 0.92 expected were internal rotations uninhibited within the free space available, a flexibility less than this must be inferred for the polymer solutes; that the flexibility should increase with temperature is, of course, reasonable.

The construction of (Leybold) scale models, however, reveals such a degree of interlocking that compact coiled configurations are clearly impossible from ordinary steric reasons. We note that several authors ${ }^{27}$ have referred to the hindering of rotations by side-groups. Although Eriksson ${ }^{28}$ earlier proposed that in ethyl acetate poly(methyl methacrylate) molecules are completely coiled, Schulz ${ }^{29}$ considered these coils to have cylindrical shapes. In agreement with this, the molecular friction coefficient calculated

[^3]from observations of the diffusion constant ${ }^{30}$ and dynamic double refraction ${ }^{31}$ in acetone solution had already suggested that the solute polymer was morphologically between a random coil and a rigid rod. Proton magnetic resonance is said ${ }^{32}$ to indicate a regularity of structure, the most obvious form of which is helical.

From X-ray diffraction studies Koumalous ${ }^{33}$ stated that the side-groups lie on alternate sides of a chain with limited flexibility, forty repeating units occurring in a helix of diameter $65 \AA$. Such ideas are quite compatible with the models. Other investigations ${ }^{34}$ have shown like groups to be at maximum distances apart, while X-ray measurements ${ }^{35}$ of crystalline poly(methyl methacrylate) have been interpreted in terms of a polymer chain coiled in 5 -fold helices, associated with two different configurations: a 5 unit 2 turn $\left(5_{2}\right)$ helix, requiring an isotactic chain conformation (because of the odd number of monomeric units per repeat distance), and a 10 unit 4 turn (10_{4}) helix, which would accommodate syndiotactic chains but would have twice the repeat distance; models and calculations show the 10_{4} helix to be stiffer than the 5_{2} helix. Salovey ${ }^{26}$ has raised the possibility that isotactic poly(methyl methacrylate) may have helical conformations in benzene solutions and quotes Bovey and Tiers ${ }^{36}$ for the suggestion that free-radicalinduced polymerisation can favour the generation of syndiotactic polymers. These last are unlikely to be isotropically polarisable whatever their conformations. The possible anisotropy of this polymer has already been demonstrated. Specimens which had been stretched or compressed were anisotropic under the conditions for observing magnetic birefringence; ${ }^{37}$ according to Tsvetkov et al. ${ }^{38}$ the dynamic birefringences exhibited in various solvents can be described by an anisotropic micellar model; de Rosset, ${ }^{39}$ also from flow-birefringence experiments, had previously recognised the solute particles as ellipsoids with major : minor axial ratios of about 2 .

Apparent Anisotropic Polarisabilities of Poly(methyl Methacrylate) Solutes.-In the light of the above, the behaviour of this solute in electric fields becomes relevant. If we make the simplifying assumptions that the dissolved macromolecules possess polarisability ellipsoids of revolution and have their resultant moments acting along one of the major axes, the ${ }_{\mathrm{m}} K$'s, R_{D} 's, and μ 's of Table 2 lead to results as in Table 5 .

Table 5.
Apparent semi-axes of polarisability * of polymers I-VIII.

Polymer	$+\left(b_{1}-b_{2}\right)$	$b_{1}+2 b_{2}$	b_{1}	b_{2}
I	$0 \cdot 04$	$638 \cdot 31$	$212 \cdot 80$	$212 \cdot 76$
II	0.03	998.61	$332 \cdot 89$	332.86
III	$0 \cdot 03$	$1386 \cdot 13$	$462 \cdot 06$	$462 \cdot 03$
IV	$0 \cdot 03$	$1877 \cdot 47$	$625 \cdot 84$	$625 \cdot 81$
V	$0 \cdot 02_{\text {s }}$	$2676 \cdot 19$	$892 \cdot 08$	$892 \cdot 05_{5}$
VI	$0 \cdot 02$	$11,889 \cdot 57$	$3963 \cdot 20$	$3963 \cdot 18$
VII	$0 \cdot 02$	$13,090.33$	$4363 \cdot 46$	$4363 \cdot 44$
VIII	0.01_{5}	$47,693.61$	$15,897.88$	$15,897 \cdot 86_{5}$

* Calc. taking $b_{1}-b_{2}$ as positive; negative values of $\left(b_{1}-b_{2}\right)$ produce a similar low anisotropy, but with $b_{2}>b_{1}$.

The anisotropies thus displayed are small and appear to diminish as M_{2} increases; this diminution is also reflected in the specific Kerr constants, $\infty\left({ }_{s} K_{2}\right)$, of Table 2, which drop from 8.7×10^{-14} to 1.0×10^{-14} as M_{2} changes from 100 to $1,839,000$. Since ${ }_{\infty}\left({ }_{s} K_{2}\right)$ for

[^4]$\mathrm{Me}_{2} \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$ is ${ }^{14}$ ca. 0.18×10^{-12} it seems improbable that the repeating monomer units in our polymers are themselves near-isotropic. We, therefore, conclude that either (a) the chains are flexible and contain these units in random arrangement or (b) the chains when short are stiff but when long enough can adopt curved configurations. Because models strongly counterindicate (a), we prefer (b) which qualitatively can be harmonised with helices of the type described in refs. 33 and 35.

Acknowledgment is made to the University of Sydney for the award of a Gritton Research Scholarship to K. M. S. S. and to Dr. R. Roper for recording the infrared spectra.

[^5]
[^0]: ${ }^{1}$ Le Fèvre, Le Fèvre, and Parkins, $J ., 1958,1468$; 1960, 1814; Aroney, Le Fèvre, and Parkins, $J ., 1960,2890 ;$ Le Fèvre and Sundaram, J., 1962, 1494, 4003.
 ${ }^{2}$ Vogel, " Practical Organic Chemistry," Longmans, London, 2nd edn., 1951.
 ${ }^{3}$ Scanlan, Trans. Faraday Soc., 1954, 50, 756.

 * Chinai, Matlack, Resnick, and Samuels, J. Polymer Sci., 1955, 1\%, 391.
 ${ }^{5}$ Billmeyer and Stockmayer, J. Polymer Sci., 19.50, 5, 121.
 ${ }^{6}$ Bovey and Tiers, J. Polymer Sci., 1960, 44, 173.
 7 Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.

[^1]: ${ }^{8}$ Baxendale, Bywater, and Evans, J. Polymer Sci., 1946, 1, 237.
 ${ }^{9}$ Fattakhov, Tsvetkov, and Kallistov, Zhur. eksp. teor. Fiz., 1954, 26, 351.
 10 Fox, Kinsinger, Mason, and Schuele, Polymer, 1962, 3, 71, 97, 111.
 11 Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261. Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }^{12}$ Le Fèvre and Sundaram, J., 1962, 1494.
 13 Mikhailov, J. Polymer Sci., 1958, 30, 605.
 ${ }_{14}$ Le Fèvre and Sundaram, J., 1962, 3904.
 15 Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen, London, 2nd edn., 1958, p. 181.
 ${ }^{16}$ Bentley, Everard, Marsden, and Sutton, $J ., 1949,2957$; Le Fèvre and Maramba, $J ., 1952$, 235; Le Fèvre, Maramba, and Werner, J., 1953, 2496.

 17 See ref. 12.

[^2]: 18 Ukaji, Bull. Chem. Soc. Japan, 1959, 32, 1275.
 ${ }^{19}$ Le Fèvre, Liversidge Lecture, J. Proc. Roy. Soc. N.S.W., 1951, 95, 1.

[^3]: ${ }^{20}$ de Brouckère, Buess, and Van Beck, J. Polymer Sci., 1957, 23, 233.
 *1 Imamura, Nippon Kagaku Zasshi, 1961, 82, 554.
 23 Kojima, J. Chem. Soc. Japan, 1941, 62, 1903.
 ${ }^{23}$ Mikhailov and Krasmer, Zhur. tekh. Fiz., 1953, 23, 1931.
 ${ }^{24}$ Marchal and Benoit, J. Polymer Sci., 1957, 23, 223; Marchal and Lapp, ibid., 1958, $27,571$.
 ${ }^{25}$ Debye and Bueche, J. Chem. Phys., 1951, 19, 589.
 ${ }^{26}$ Salovey, J. Polymer Sci., 1961, 50, S7.
 ${ }^{27}$ Chinai, Matlack, Resnick, and Samuels, J. Polymer Sci., 1955, 17, 391; Fox and Loshalk, J. Appl. Phys., 1955, 26, 1080; Silberberg, Eliassaf, and Katchalsky, J. Polymer Sci., 1957, 23, 259; Strella and Zand, ibid., 1957, 25, 97; Broens and Muller, Kolloid. Z., 1950, 119, 45; Chinai and Samuels, J. Polymer Sci., 1956, 19, 463; Chinai and Bondurant, ibid., p. 555.
 ${ }^{28}$ Eriksson, Acta Chem. Scand., 1953, 7, 623.
 ${ }_{29}$ Schulz, Makromol. Chem., 1953, 10, 158.

[^4]: ${ }^{30}$ Meyerhoff and Schulz, Makromol. Chem., 1952, 7, 294.
 ${ }^{31}$ Tsvetkov and Petrova, Zhur. fiz. Khim., 1949, 23, 368.
 ${ }^{32}$ Odajima, Sohma, and Koike, J. Chem. Phys., 1955, 23, 1959.
 ${ }^{33}$ Koumalous, Proc. Roy. Soc., 1944, A, 182, 166.
 ${ }^{34}$ Arcus, $J ., 1955,2801$.
 ${ }^{35}$ Stroupe and Hughes, J. Amer. Chem. Soc., 1958, 80, 2341.
 ${ }^{36}$ Bovey and Tiers, J. Polymer Sci., 1960, 44, 173.
 ${ }^{37}$ Ploquin, Inst. recherches sci. et tech. Centre-Ouest, 1954, 295, 33.
 ${ }^{38}$ Tsvetkov, Firsman, and Mukhina, Zhur. cksp. teor. Fiz., 1956, 30, 649.
 ${ }^{39}$ de Rosset J. Chem. Phys., 1941. 9. 766.

[^5]: University of Sydney, N.S.W., Australia.
 [Received, August 2nd, 1962.]

